If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2-19b+42=0
a = 2; b = -19; c = +42;
Δ = b2-4ac
Δ = -192-4·2·42
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-5}{2*2}=\frac{14}{4} =3+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+5}{2*2}=\frac{24}{4} =6 $
| 2q=409=913 | | 15l=60 | | 9(-1.5)=x | | 7/8r=1/4 | | (x-1/3x+3)-(9/x^2-1)=2/x+1 | | -11-5a=6a(5a+) | | 41=x+15 | | 2x-10=15x+3 | | 11/8-x=2/3 | | –0.4(x–3.8)=–2 | | 6x=2-2x | | x/6-8=7* | | -7(v+4)+4v+7=8v+10 | | (d2+6d+9)+(d3+6d+9)= | | a/8-4=5 | | 40=(2)^x | | -4(x-2)=-6 | | 13/8-x=2/3 | | x^2+(x+10)^2=108 | | 16-2r=-3r+6r=1 | | A^2(b+C)=0 | | 49=1/2h(6+1) | | 3.75x=2.75 | | 3x-5=5x-(2x-5) | | 25x+3200=45x+2800 | | 45-6x-8-7x=-93 | | 126=7r-7 | | a+35=17a+19 | | 4x^2+3.2x-1.92=0 | | 2b-61=b-26 | | x+60=70-5 | | 9z-2=133 |